*Intended learning outcomes: Present characteristics of the manufacturing calendar, or shop calendar. Explain an example of a manufacturing calendar.*

Measures of the load and capacity of a work center are often in units of time. In other cases as well, time quantities are necessary rather than load, at least for calculating lead time. It is a problem, however, that according to the Gregorian calendar, a week does not always contain the same number of (e.g., five) working days.

The *manufacturing calendar* or* shop calendar* counts working days only and omits nonworking days, such as vacations, holidays, or weekends.

The *manufacturing date* of the manufacturing calendar begins on day “zero,” which corresponds to a particular Gregorian date. For each working day, you add the value of one.

Figure 13.3.1.1 shows an excerpt from a manufacturing calendar.

**Fig. 13.3.1.1** The manufacturing calendar.

A manufacturing calendar allows addition or subtraction of a certain number of working days to or from a given Gregorian date. Scheduling of orders often uses these calculations.

In addition, to gain the load profile of a work center when we want to compare the load over a particular time period with the capacity available, this calendar takes only working days into consideration.

## Course section 13.3: Subsections and their intended learning outcomes

##### 13.3 Scheduling of Orders and Scheduling Algorithms

Intended learning outcomes: Describe the manufacturing calendar and the calculation of the manufacturing lead time. Differentiate between Backward Scheduling and Forward Scheduling. Explain network planning, central point scheduling, the lead-time stretching factor, and probable scheduling. Present scheduling of process trains.

##### 13.3.1 The Manufacturing Calendar, or Shop Calendar

Intended learning outcomes: Present characteristics of the manufacturing calendar, or shop calendar. Explain an example of a manufacturing calendar.

##### 13.3.2 Lead Time Scheduling: Calculating the Manufacturing Lead Time

Intended learning outcomes: Produce an overview on lead time scheduling. Identify definitions for the elements of operation time. Present the lead time formula and the start date as a function of completion date. Differentiate between manufacturing lead time, cycle time and throughput time.

##### 13.3.3 Backward Scheduling and Forward Scheduling

Intended learning outcomes: Produce an overview on lead time scheduling. Explain forward scheduling and backward scheduling. Describe a simple algorithm for backward scheduling.

##### 13.3.4 Network Planning and CPM — Critical Path Method

Intended learning outcomes: Explain network planning and the critical path method (CPM). Present an example of a scheduled network. Describe a network algorithm for backward scheduling.

##### 13.3.5 Central Point Scheduling

Intended learning outcomes: Explain central point scheduling. Describe several possible solutions in a directed network of operations.

##### 13.3.6 Probable Scheduling

Intended learning outcomes: Produce an overview on order urgency and slack time. Differentiate between forward, backward, and probable scheduling. Explain the role of the lead-time-stretching factor in probable scheduling.

##### 13.3.6b Calculating the Lead-Time-Stretching Factor

Intended learning outcomes: Describe the determination of the lead-time-stretching factor. Explain the equation for recalculation of lead-time-stretching factor.

##### 13.3.7 Scheduling Process Trains

Intended learning outcomes: Differentiate between reverse flow scheduling, forward flow scheduling, and mixed flow scheduling.