Intended learning outcomes: Explain lead time reduction through setup time reduction and batch size reduction as well as further concepts. Describe line balancing through harmonizing the content of work. Disclose Just-in-Time Logistics. Present generally valid advantages of the lean / Just-in-Time concept for materials management and for capacity management.
The following discusses the most important of the methods and techniques of the lean / just-in-time concept. See here also [Wild01].
Course section 6.2: Subsections and their intended learning outcomes
6.2 The Lean Concept / Just-in-Time Concept
Intended learning outcomes: Explain lead time reduction through setup time reduction and batch size reduction as well as further concepts. Describe line balancing through harmonizing the content of work. Disclose Just-in-Time Logistics. Present generally valid advantages of the lean / Just-in-Time concept for materials management and for capacity management.
6.2.1 Setup-Friendly Production Facilities — Lead Time Reduction through Setup Time Reduction and Batch Size Reduction
Intended learning outcomes: Identify the simplest formula for operation time. Produce an overview on setup-friendly production facilities.
6.2.1b Cyclic Planning and “Heijunka” — Lead Time Reduction through Setup Time Reduction and Batch Size Reduction
Intended learning outcomes: Present in detail cyclic production planning and leveling of the production (“heijunka”).
6.2.1c Reduction of Variants, Modular Product Concept, Single-Minute Exchange of Dies (SMED) — Lead Time Reduction through Setup Time Reduction and Batch Size Reduction
Intended learning outcomes: Describe harmonizing the product range through reduction of variants and a modular product concept. Explain single-minute exchange of dies (SMED).
6.2.2 Production Segmentation, or Manufacturing Segmentation — Lead Time Reduction Through Adaptation of the Production Infrastructure
Intended learning outcomes: Produce an overview on production or manufacturing segmentation.
6.2.2b Cellular Manufacturing and One-Piece Flow — Lead Time Reduction Through Adaptation of the Production Infrastructure
Intended learning outcomes: Explain cellular manufacturing, one-piece flow, and the formula for lead-time calculation with cellular manufacturing.
6.2.3 Standardizing the Production Infrastructure, Flexible Capacities, Structuring Assembly Processes, Complete Processing, Point-of-Use Inventory, Point-of-Use Delivery — Further Concepts of Lead Time Reduction
Intended learning outcomes: Disclose the effect of standardizing the production infrastructure and of flexible capacity. Describe structuring assembly processes and complete processing. Identify point-of-use inventory and point-of-use delivery.
6.2.4 Line Balancing — Harmonizing the Content of Work
Intended learning outcomes: Identify how tasks of the same duration at each production structure level result in a rhythmic flow of goods. Explain why the various operations at a workstation (for all the products) as well as the various operations for a single product should be of the same approximate duration.
6.2.4b Line Balancing — Changing Lead Time of Operations
Intended learning outcomes: Produce an overview on measures for changing lead time of operations.
6.2.5 Just-in-Time Logistics: Quality Circles, TQM, Genchi Genbutsu, Kaizen, Poka-Yokero, Andon, 5S, and Others
Intended learning outcomes: Produce an overview on measures for motivation, qualification, and empowerment of employees as well as employee involvement (EI and quality circles. Describe concepts such as genchi genbutsu, kaizen, poka-yokero, Andon, 5S.
6.2.6 Generally Valid Advantages of the Lean / Just-in-Time Concept for Materials Management
Intended learning outcomes: Describe the effect of forecast errors through the combining of requirements in batches across many production structure levels. Explain the effect of longer and shorter lead time on the (customer) order penetration point.
6.2.7 Generally Valid Advantages of the Lean / Just-in-Time Concept for Capacity Management
Intended learning outcomes: Explain how the lean /JIT concept reduces queue time. Describe how the lean /JIT concept allows for simpler control techniques.
Course 6: Sections and their intended learning outcomes
Course 6 – The Lean / Just-in-Time Concept and Repetitive Manufacturing
Intended learning outcomes: Produce an overview on lean / just-in-time and repetitive manufacturing. Explain the lean / just-in-time concept in detail. Describe the Kanban technique. Identify the cumulative production figures principle. Disclose an implementing procedure and a comparison of techniques.
6.1 Characterizing Lean / Just-in-Time and Repetitive Manufacturing
Intended learning outcomes: Explain Just-in-Time and Jidoka: Increasing productivity through reduction of overburdening, unevenness, and useless effort, or waste. Describe characteristic features for simple and effective planning & control techniques of repetitive manufacturing.
6.2 The Lean Concept / Just-in-Time Concept
Intended learning outcomes: Explain lead time reduction through setup time reduction and batch size reduction as well as further concepts. Describe line balancing through harmonizing the content of work. Disclose Just-in-Time Logistics. Present generally valid advantages of the lean / Just-in-Time concept for materials management and for capacity management.
6.3 The Kanban Technique
Intended learning outcomes: Explain Kanban as a technique of execution and control of operations as well as a technique of materials management. Disclose the adequate long- and medium-term planning for Kanban.
6.4 The Cumulative Production Figures Principle (CPFP)
Intended learning outcomes: Explain the cumulative production figures diagram and the cumulative production figures principle.
6.5 Implementing Procedure and Comparison of Techniques
Intended learning outcomes: Present procedures in implementing effective logistics. Differentiate between Kanban and the order point technique through a comparison of the techniques.
6.6 Summary
.
6.7 Keywords
.
6.8 Scenarios and Exercises
Intended learning outcomes: Operation time versus operation cost: disclose the effect of varying setup time and batch size. Calculate the effect of cellular manufacturing on lead-time reduction. Perform line balancing through harmonizing the content of work. Determine the number of Kanban cards.
6.9 References
.
Case [Course 6]
.