*Intended learning outcomes: Produce an overview on production or procurement costs, batch-size-dependent unit costs, setup and ordering costs, and carrying cost. Explain optimum batch size, optimum length of order cycle, the classic economic order quantity formally and in practical application. Disclose extensions of the batch size formula.*

Batch sizing, orlot sizing, is the process of, or techniques used in, determining batch or lot size ([APIC16]).

## Course section 11.4: Subsections and their intended learning outcomes

##### 11.4 Batch Sizing, or Lot Sizing

Intended learning outcomes: Produce an overview on production or procurement costs, batch-size-dependent unit costs, setup and ordering costs, and carrying cost. Explain optimum batch size, optimum length of order cycle, the classic economic order quantity formally and in practical application. Disclose extensions of the batch size formula.

##### 11.4.1 Production or Procurement Costs: Batch-Size-Dependent Unit Costs, Setup and Ordering Costs, and Carrying Cost

Intended learning outcomes: Differentiate between batch-size-dependent production or procurement costs and batch-size-independent production or procurement costs. Explain carrying cost and carrying cost rate. Produce an overview on costs of financing or capital costs, storage infrastructure costs and the risk of depreciation.

##### 11.4.2 Optimum Batch Size and Optimum Length of Order Cycle: The Classic Economic Order Quantity (EOQ)

Intended learning outcomes: Explain economic order quantity (EOQ), variables for the EOQ formula and the EOQ formula. Describe the cost curves as a function of batch size. Present the optimum length of order cycle.

##### 11.4.3 Economic Order Quantity (EOQ) and Optimum Length of Order Cycle in Practical Application

Intended learning outcomes: Present in detail the sensitivity analysis of the EOQ calculation. Produce an overview on the practical implementation of the EOQ formula. Identify several factors that influence a maximum or minimum order quantity.

##### 11.4.4 Extensions of the Economic Order Quantity (EOQ) Formula

Intended learning outcomes: Identify additional variables for lead-time-oriented batch sizing. Present lead-time-oriented batch sizing. Describe total costs curves, considering discount levels. Produce an overview on joint replenishment: kit and collective materials management.

## Course 11: Sections and their intended learning outcomes

##### Course 11 – Inventory Management and Stochastic Materials Management

Intended learning outcomes: Describe usage statistics, analyses, and classifications. Explain in detail the order point technique. Disclose how to calculate safety stock. Differentiate various batch or lot sizing techniques.

##### 11.1 Stores and Inventory Management

Intended learning outcomes: Present characteristic features of stores management. Produce an overview on inventory transactions. Describe physical inventory and inventory valuation.

##### 11.2 Usage Statistics, ABC Classification, XYZ Classification, and Other Anlayses

Intended learning outcomes: Present statistics on inventory transactions, sales, and bid activities. Explain the ABC Classification and the Pareto Chart. Describe the XYZ Classification and Other Analyses and Statistics.

##### 11.3 ROP (Re)-Order Point Technique, and Safety Stock Calculation

Intended learning outcomes: Explain the (re-)order point technique and variants thereof. Describe the safety stock calculation with continuous demand. Disclose the determination of the service level and the relation of service level to fill rate.

##### 11.4 Batch Sizing, or Lot Sizing

Intended learning outcomes: Produce an overview on production or procurement costs, batch-size-dependent unit costs, setup and ordering costs, and carrying cost. Explain optimum batch size, optimum length of order cycle, the classic economic order quantity formally and in practical application. Disclose extensions of the batch size formula.

##### 11.5 Summary

.

##### 11.6 Keywords

.

##### 11.7 Scenarios and Exercises

Intended learning outcomes: Calculate examples for the ABC Classification. Disclose the ABC-XYZ analysis in materials management. Differentiate between safety stock variation and demand variation. Determine batch size depending on stockout costs. Assess the effectiveness of the order point technique.

##### 11.8 References

.