Intended learning outcomes: Present terms such as object, attribute, object class, view, primary and secondary keys. Explain basic concepts such as association, association role and type. Describe the breaking up of an n-to-n association – in particular a reflexive one – and the association class. Disclose the use of the hierarchical constructs for developing a company-wide generic object model.
With the introduction of IT support, the modeling of information systems in the data and object views became decisively more important. Storing data on operations objects comprises very complex structuring of a multitude of classes of data stocks. Users have to understand data and object models, if they are to be able to use it efficiently in practical operation. Then, the models have to be implementable on the computer; they must therefore also satisfy requirements for accuracy and unambiguity. Data and object models belong to the conceptual interface between users without specific IT-knowledge and producers of information systems. The following terms pertaining to the design of such models are therefore taken from colloquial language wherever possible and should be understandable.
Course section 20.3: Subsections and their intended learning outcomes
20.3 Modeling Information Systems in the Data View and Object View
Intended learning outcomes: Present terms such as object, attribute, object class, view, primary and secondary keys. Explain basic concepts such as association, association role and type. Describe the breaking up of an n-to-n association – in particular a reflexive one – and the association class. Disclose the use of the hierarchical constructs for developing a company-wide generic object model.
20.3.1 Object, Attribute, and Object Class
Intended learning outcomes: Differentiate between entity, object, and data record. Differentiate between attribute and data field. Differentiate between object class, file, and table. Explain the class customer as a table in the relational database model.
20.3.2 View and Primary and Secondary Keys
Intended learning outcomes: Produce an overview on the view on a class. Differentiate between primary key and secondary key. Describe characteristics for a “good” primary key. Explain the representation of a class in an object-oriented approach (with example) and the representation of an object.
20.3.3 Association and (Association) Role
Intended learning outcomes: Differentiate between binary association and reflexive association. Explain Abrial’s access function and the example of the association of the classes “book” and “customer” in library systems. Identify the (association) role.
20.3.4 Single-Valued and Multivalued Roles, and Total and Partial Roles
Intended learning outcomes: Differentiate between a single-valued role and a multivalued role. Differentiate between a total and a partial role, or access function.
20.3.5 Association Types
Intended learning outcomes: Differentiate between the 1-to-1 association, the 1-to-n association, the n-to-1 association, and the n-to-n association. Explain various examples of different binary associations.
20.3.6 Breaking up an n-to-n Association; Association Class
Intended learning outcomes: Explain the association class formed by breaking up an n-to-n association into a 1-to-n association and an n-to-1 association.
20.3.7 The Crow’s-Foot Notation and the Common Entity-Oriented Notation
Intended learning outcomes: Describe the commonly used crow’s-foot notation for depicting associations in the entity-oriented approach. Identify the common notation for associations in the entity-oriented approach.
20.3.7b The Reidentification Key and the Object-Oriented Notation
Intended learning outcomes: Explain the Representation of associations in an object-oriented form, as well as the concept of the reidentification key.
20.3.8 Breaking Up a Reflexive n-to-n Association, Step 1: Duplicate, and Step 2: Breakdown
Intended learning outcomes: Explain Breaking up a reflexive n-to-n association, step 1: Duplicate the class to create its two subclasses, and step 2: Classical breakdown of the n-to-n association.
20.3.8b Breaking Up a Reflexive n-to-n Association, Step 3: Merge
Intended learning outcomes: Explain Breaking up a reflexive n-to-n association, step 3: Merge the generating classes.
20.3.9 Using the Hierarchical Constructs Based on Basic Object Classes: The Company-Wide Generic Object Model
Intended learning outcomes: Explain the basic object classes and possible subclasses (specializations) of an industrial company. Describe the concept of a company-wide data model, or generic model.
Course 20: Sections and their intended learning outcomes
Course 20 – Selected Sections of Information Management
Intended learning outcomes: Produce a review of important terms in information management. Disclose the modeling of operational information systems. Explain in detail the modeling of information systems in the data view and object view.
20.1 Important Terms in Information Management
Intended learning outcomes: Produce definitions for terms from colloquial language that are easily understood by employees, such as for information, data, information technology, information system, database.
20.2 Modeling Enterprise Information Systems
Intended learning outcomes: Present basic principles of modeling. Differentiate various dimensions in the modeling of information systems for business processes. Describe the dimension of hierarchy creation and the dimension of various views in modeling.
20.3 Modeling Information Systems in the Data View and Object View
Intended learning outcomes: Present terms such as object, attribute, object class, view, primary and secondary keys. Explain basic concepts such as association, association role and type. Describe the breaking up of an n-to-n association – in particular a reflexive one – and the association class. Disclose the use of the hierarchical constructs for developing a company-wide generic object model.
20.4 Summary
.
20.5 Keywords
.